
A 20-20 View of Ada
An Evolutionary Perspective

Tucker Taft
AdaCore

Ada-Europe 2019
Warsaw, Poland

June 2019

1

2

Ada 2020 Update

S. Tucker Taft
November 15, 2017

borrowed heavily from ...

Ada83 to
Ada2012—Lessons

Learned Over 30 Years of
Language Design

Portland, OR

October 2014

Presentation cover
page EU

www.adacore.com

Tucker Taft
AdaCore Inc

John Barnes
John Barnes
Informatics

… some images from ...

Safe Parallel Language Extensions
for Ada 202X

June 2014

Presentation cover
page EU

www.adacore.com

Tucker Taft, AdaCore

Co-Authors of HILT 2014 paper:
Brad Moore, Luís Miguel Pinho, Stephen Michell

… and a bit from ...

5

Ada 2020 High-Level Story

● Make Ada a great language for parallel programming

● Other enhancements that build on Ada’s existing strengths:

○ Safety and Security

○ Contract-Based Programming

○ Expressivity (particularly when it furthers the previous goals)

6

Adding Support for Parallel Programming

Concurrent programming

Multiple computations

One or more workers

Often need to synchronize
between computations

Parallel programming

One (or more) large
computation(s)

Many workers

Synchronization typically
only for work split/join

7

Adding Support for Parallel Programming

Concurrent programming

• Ada has great building blocks
for concurrent programming

• Tasks, rendezvous, protected
objects

Parallel programming

• Nothing currently built-in

• Although concurrent building
blocks can be used, they’re
very heavyweight

8

Ada 2020 Parallel Programming Goals

● Make it easy and safe to write parallel algorithms

● Hide the housekeeping of dispatch/scheduling/data collection

● Allow the compiler to choose among heterogeneous processors

○ N threads/processors, GPU, coprocessors, etc..

● Have the compiler detect and disallow data races

Safe Parallel Ada 9

A reminder why this is important…
The 2005 Right Turn in Single-Processor Performance (14 years ago)

Courtesy IEEE
Computer,
January 2011,
page 33.

10

Parallel Loops (2017)

parallel for I in 1 .. 1_000 loop
 A(I) := B(I) + C(I);
end loop;

parallel for Elem of Arr loop
 Elem := Elem * 2;
end loop;

11

Parallel Loops (202X)

parallel (2*Num_CPUs) -- Specify max level of parallelism
for I in 1 .. 1_000 loop
 A(I) := B(I) + C(I);
end loop;

parallel (Ck in Partial_Sum’Range) -- A named chunk index
for Elem of Arr loop

Elem := Elem * 2;
Partial_Sum(Ck) := @ + Elem ** 2; -- Manual reduction

end loop;
Sum := Partial_Sum’Reduce(“+”, 0.0); -- Final reduction

Parallel Block (2014)
 parallel
 sequence_of_statements
{and
 sequence_of_statements}
 end parallel;

From “Gang of 4” HILT 2014 paper:
Each alternative is an (explicitly specified) “parallelism opportunity” (POp) where the compiler
may create a tasklet, which can be executed by an execution server while still running under the
context of the enclosing task (same task ‘Identity, attributes, etc.). Compiler will complain if any
data races or blocking are possible (using Global and Potentially_Blocking aspect information).

Parallel Block (202X)
 parallel do
 handled_sequence_of_statements
{and
 handled_sequence_of_statements}
 end do;

From Ada 202x draft manual:
Each handled_sequence_of_statements represents a separate logical thread of control that
proceeds independently and concurrently. The parallel_block_statement is complete once every
one of the handled_sequence_of_statements has completed, either by reaching the end of its
execution, or due to a transfer of control out of the construct by one of the
handled_sequence_of_statements (see 5.1).

● Parallel block is important for divide-and-conquer algorithms
○ such as sorting and searching
○ equivalent to parallel loop around a “case” statement

14

Map/Reduce Iterators (2017)

-- A reduction expression to calculate the sum of elements of an array
Result : Integer := (for Element of Arr => <0> + Element)

-- A reduction expression to create an unbounded string
-- containing the alphabet
Alphabet : Unbounded_String
 := (for Letter in 'A' .. 'Z' => <Null_Unbounded_String> & Letter)

-- A reduction expression to determine how many
-- people in a database are 30-something
ThirtySomethings : constant Natural
 := (for P of Personnel => <0> + (if Age(P) > 30 then 1 else 0));

15

Map/Reduce Iterators (202X)

-- A reduction expression to calculate the sum of elements of an array
Result : Integer := [for Element of Arr => Element]’Reduce(“+”, 0);

-- A reduction expression to create an unbounded string
-- containing the alphabet
Alphabet : Unbounded_String
 := [for Letter in 'A' .. 'Z' => Letter]’Reduce(“&”, Null_Unbounded_String, “&”);

-- A reduction expression to determine how many
-- people in a database are 30-something
ThirtySomethings : constant Natural
 := [for P of Personnel => (if Age(P) > 30 then 1 else 0)]’Reduce(“+”, 0);

Global contracts from SPARK (2017)
used for data race detection

Global => in out all -- default for non-pure pkgs
Global => null -- default for pure packages

-- Explicitly identified globals with modes
Global => (in P1.A, P2.B,
 in out P1.C,
 out P1.D, P2.E)

-- Pkg data, access collection, task/protected/atomic
Global => in out P3 -- pkg P3 data
Global => in out P1.Acc_Type -- acc type
Global => in out synchronized -- prot/atomic

Global contracts from SPARK (202X)
used for data race detection

Global => in out all -- default for non-pure pkgs
Global => null -- default for pure packages

-- Explicitly identified globals with modes
Global => (in P1.A, P2.B,
 in out P1.C,
 out P1.D, P2.E)

-- Pkg data, access collection, task/protected/atomic
Global => in out private of P3 -- pkg P3 data

Global => in out P1.Acc_Type -- acc type

Global => synchronized in out all -- prot/atomic

Nonblocking contract
used for deadlock detection

•Ada 202X Nonblocking aspect

 -- apply to one subprogram
 procedure Suspend_Until_True
 (S : in out Suspension_Object)
 with Nonblocking => False;

 -- apply to an entire package
 package Ada.Characters.Handling
 with Nonblocking => True is …

•Similar to “queued” qualifier in ParaSail

Ada 202x Syntactic Building Blocks
for Parallelism

19

20

Ada 202X Building Blocks -- Iterators
●Programmers Prefer Iterators

○ Looping semantics very visible -- no mystery
○ Ada 2012 iterators made containers significantly more useful

■ E.g. AdaCore tool written in 2013 makes heavy use of iterators

● In Ada 202X, we build on iterators
○ For array aggregates defined with “iterated component association”:

■ X : Int_Array := (for I in 1 .. N => I**2)
○ For aggregates defined by iterating over a container:

■ Y : Int_Array := (for E of C => E);
○ For “procedural iterators”:

■ Loop body becomes local anonymous procedure passed into existing iterator
procedures:
● such as Maps.Iterate and Environment_Variables.Iterate

○ For reduction expressions (see earlier examples)

21

Ada 202X Building Blocks -- Filters
● Iterators sometimes generate too many values

○ Use filter to reduce to values of interest
○ for iterator when condition ...

● Filters can be used in various kinds of iterators:
○ For aggregates defined by iterating over a container:

■ Odds : Int_Array := (for E of C when E mod 2 = 1 => E);
○ For procedural iterators:

■ for (Name, Value) of Environment_Variables.Iterate
 when Name(Name’First) /= “_” loop
 Put_Line (Name & “ => “ & Value);
end loop;

○ For reduction expressions:
■ [for P of Personnel when Age(P) > 30 => 1]’Reduce(“+”, 0);

22

Ada 202X Building Blocks -- “parallel”
● Iterators can generate many values

○ Use “parallel” to spawn multiple logical threads of control
■ parallel … -- uses default amount of “chunking”
■ parallel (Num_Chunks) … -- specify a max number of chunks
■ parallel (Chunk in 1..Num_Chunks) … -- specify a chunk parameter

● “parallel” can be used with various kinds of iterators:
○ For iterating over a large range:

■ parallel (Chunk in 1 .. Num_Chunks) -- named chunk parameter
for I in Arr’Range loop
 . . . -- possibly do other stuff

Partial_Sum(Chunk) := @ + Arr(I); -- accumulator for each chunk
end loop;
return Partial_Sum’Reduce(“+”, 0.0); -- final reduction

○ For large reduction expressions over container iterator:
■ [parallel for P of Personnel when Age(P) > 30 => 1]’Reduce(“+”, 0);

● User defined “split” iterators for containers -- like Java’s “spliterators”
● Data race conflict checks provided at three levels -- All, Known, None

23

Ada 202x uses “building block” approach

“parallel”
with

chunks
Iterators Filters

● Enabled by orthogonality of syntax
● Eases use and readability relative to large library or

multiple pragmas
● Portable concepts that can be mapped to diverse targets
● Compile-time conflict checking for safety

Quantified
expression

Reduction
expression

Aggregate

Loop
body

24

Relevance of OpenMP & friends
●OpenMP 1.0 -- 1997, OpenMP ARB

○ Heavy weight threads, SPMD model
●CUDA -- 2007, NVIDIA

○ NVIDIA GPUs, explicit separated “kernel” code
●OpenCL -- 2008, Apple, Khronos

○ Most GPUs, explicit separated “kernel”s
● OpenMP 3.0 -- 2008, OpenMP ARB

○ Lighter weight “tasks” with work sharing
●OpenACC -- 2011, Cray, NVIDIA, PGI

○ Many GPUs, no separate “kernel”
○ Extracts GPU “kernel” code from for-loop

●OpenMP 4.0 -- 2013, OpenMP ARB
○ Adds “target” devices, begins to subsume OpenACC

● OpenMP 5.0 -- 2018, OpenMP ARB
○ Largely subsumes OpenACC, and OpenCL to lesser extent

25

OpenMP Evolution
● OpenMP originally designed in 1997

○ Initially supported only heavy-weight “threads”
■ mapped generally to “kernel” threads
■ analogous to Ada “tasks”

○ Thread ID used explicitly to compute what part of data to manipulate
■ SPMD -- “Single Program, Multiple Data” model

○ Programs had no visible structure that matched computation being performed
■ Pragmas used heavily to provide implicit structure
■ No data race checking provided

● OpenMP evolved over time; OpenMP 5.0 is recently released (Nov 2018)
○ Early features mostly supplanted by newer notions based on lighter-weight “tasks” and

work sharing.
○ Supports parallel loops of a specific structure (pragma + pattern)
○ Supports parallel blocks using an explicit “task” pragma
○ Incorporated OpenACC-like support for “targets” such as GPUs
○ Preferred over OpenCL or CUDA because can debug parallel algorithm on host before

inserting “target” directives
○ Still no data race checking in most implementations

■ Explicit dependence annotations could eventually enable more checking

26

Mapping Ada 202X to OpenMP & friends
●For Ada 202X mapping, we will generally use newer OpenMP features

○ Rely on Ada 202x language syntax for high-level parallel algorithm structure
■ including correctness and highest level tuning (e.g. chunking)

○ Rely on pragmas, aspects, and/or library calls for target-specific tuning:
■ Controlling total number of heavy-weight threads
■ Data flushing and caching
■ Mapping to target devices

● Examples of specific mappings:
○ Parallel region establishes initial number of (heavyweight) threads

■ Generally will create one region per Ada program
■ Want to minimize creating and releasing multiple heavyweight threads

○ For parallel block, tasks are generated
■ a “single” construct followed by two or more “task” pragmas (or API calls)
■ awaited at a “taskwait”

○ For parallel loop:
■ “parallel for” or “taskloop” pragma/API used for loops that match for-loop “pattern”

supported by OpenMP
■ tasks spawned explicitly to handle other Ada 202X parallel loops, such as those for

parallel container iterators, with explicit “taskwait”

27

Reprise:
Ada 2020 Parallel Programming Goals

● Make it easy and safe to write parallel algorithms

● Hide the housekeeping of dispatch/scheduling/data collection

● Allow the compiler to choose among heterogeneous processors

○ N threads/processors, GPU, coprocessors, etc..

● Have the compiler detect and disallow data races

28

Ada 2020 Expressivity Features

● Allow user to express their intent with less boilerplate

● More declarative fashion of doing things:

○ Usable in contracts

○ Smaller bug surface

29

Ada 2020 Expressivity Features (2017)

- Delta aggregate notation: Update only part of a data structure

- Array aggregates defined by an Iterator

- Aggregates for containers (can be combined with previous features)

Tax_Day : Date := (Today with delta Day => 15, Month => April);

•

Squares : array (Positive range <>) of Integer := (for I in 1 .. 256 => I ** 2);

package Maps is new Ada.Containers.Hashed_Maps (Integer, String, ..);

M : Maps.Map := (1 => "Hello", 2 => "World");

30

Ada 2020 Expressivity Features (202X)
- Delta aggregate notation: Update only part of a data structure

- Array aggregates defined by an Iterator

- Aggregates for containers (can be combined with previous features)

- Declare expressions

Tax_Day : Date := (Today with delta Day => 15, Month => April);

•

Squares : array (Positive range <>) of Integer := (for I in 1 .. 256 => I ** 2);

package Maps is new Ada.Containers.Hashed_Maps (Integer, String, ...);
package String_Sets is new Ada.Containers.Hashed_Sets (String, ...);

 M : Maps.Map := [1 => "Hello", 2 => "World"];
 S : String_Sets.Set := []; -- Empty set
begin
 S := [“Hello”]; -- Singleton set

with Post => (declare M renames Integer’Max(X, Y); begin F’Result = 2*M / (M-1))

• Pre and Post for access-to-subprogram types and for generic formals
• Default_Initial_Condition to specify state after default initialization of

a private type
• Pre, Post, Nonblocking, Global used to specify container packages
• Stable view for containers to support more efficient iteration
• Static expression functions
• The Image attribute for nonscalar types (arrays, records, etc.)
• User-specifiable attribute Put_Image provides user-defined Image
• User-defined Integer_Literal, Real_Literal, and String_Literal aspects.
• Arbitrary-precision integer and real arithmetic
• The Jorvik profile for lower criticality hard-real time systems

31

Other Ada 202X Significant Changes

Ada 202X
Prototyping and Evaluation

(cf. Ada 80 Test & Eval)
Example Issues:

CPU vs. GPU vs. OpenMP focus
Race Condition and Deadlock Checking

Syntax vs. Pragmas vs. Library
Overall Ease of Understanding

Getting the Details Right

32

33

Ada 202X Feedback Time!
● Importance of supporting lightweight parallelism in Ada 202X

○ 1 = Not important, 5 = Very important

● Which is likely more important for Ada 202X users:
○ multicore CPUs
○ GPUs
○ no difference

● Importance of Race Condition and Deadlock Checking
○ 1 = Not important, 5 = Very important

● Favored approach to lightweight parallelism for Ada 202X
○ Syntax
○ Pragmas
○ Library

34

Ada 202X Feedback Time!
- Array aggregates defined by an Iterator

- Aggregates for containers (can be combined with previous features)

Squares : array (Positive range <>) of Integer := (for I in 1 .. 256 => I ** 2);

package Maps is new Ada.Containers.Hashed_Maps (Integer, String, ...);
package String_Sets is new Ada.Containers.Hashed_Sets (String, ...);

 M : Maps.Map := [1 => "Hello", 2 => "World"];
 S : String_Sets.Set := []; -- Empty set
begin
 S := [“Hello”]; -- Singleton set

1. Use [...] for container aggregates only
2. Use [...] for container aggregates, and allow for array aggregates
3. Use [...] for container aggregates, and allow for any aggregate
4. Don’t use [...] for container aggregates

a. empty and singletons should use some other special syntax

Whither Ada 2099?

35

John and Tuck 36

• Rock Solid Abstraction Capability
• Packages and Private Types

• Very Strongly Distinguished Numeric Types

Ada 83

• Completely Static Language
• No Type Extension

• No Procedure Parameters

• No Runtime Polymorphism

• Case Statements Rule the World

John and Tuck 37

• A Radical New Style – Very Dynamic

– Case Statements Considered Harmful

– Inheritance and Polymorphism are the new Style

• But Ada 95 was a bit spikey

• Some features not fully integrated

– OO and Tasking don’t play together well

– Generics and OO are awkward partners

• No notion of Abstract Interfaces

• Relatively Low-Level Standard Libraries

Ada 95

John and Tuck 38

• Integrated OO and Tasking – Far out

• Rounded off the spikey corners of Ada 95

• Created a Library of Containers

– Lists, Vectors, Sets, Maps

– Encapsulate the Complexity

– Raise the Level of Abstraction

– But Containers Are A Bit of a Pain to Use

• But not very exciting, no new killer apps

• Still Haven’t Addressed Awkward Generic/OO Partnership

– Each generic instance represents a completely separate type hierarchy

Ada 2005

John and Tuck 39

• Don’t mess with Ada 2012
• Enforces Contract-Based Programming
• Gives Programmers More Power

– Conditional Expressions
– Quantified Expressions
– High-Level Container Iterators

• But Elegant High-Level Features Depend on
Ever-Expanding Complexity Below
– Dynamic object lifetime checks
– Tampering Checks
– Storage Subpools
– Aliased Parameters

• Generics Remain Too Heavyweight
– And not smoothly integrated into type hierarchy

Ada 2012

John and Tuck 40

 Ada 202x -- Ada 2099 A New Start?

● Multicore revolution is a chance to rethink some basic
assumptions

● Safety Through Simplification a la SPARK
○ Alias-free Pointers
○ Declared Side-Effects
○ Absence of Runtime Exceptions (AoRTE)
○ Generics and OO Integrated Smoothly
○ Syntactic Sugar Provides Uniform High-Level Abstractions

● Lightweight Safe Parallelism for all Iterators
● Still Looks and Feels Familiar while Reducing Complexity and

Gaining Safety

Beam me up!

41

